The Most Up-To-Date Vorinostat Is Twice The Fun

Матеріал з HistoryPedia
Версія від 08:06, 28 квітня 2017, створена Knot32gallon (обговореннявнесок) (The Most Up-To-Date Vorinostat Is Twice The Fun)

(різн.) ← Попередня версія • Поточна версія (різн.) • Новіша версія → (різн.)
Перейти до: навігація, пошук

During the experiment, no formation of pellicle or floating aggregates was observed probably due to the cultivation in static conditions. Figure 1 C. jejuni NCTC 11168 and 81-176 biofilm architecture and development are different after incubation for 24 and 48 h in MAC (5% O2, 10% CO2, 85% N2). The CLSM images represent an aerial view of biofilm structures with the shadow projection at the bottom. ... Cell Vorinostat chemical structure motility in biofilm Motile cells, tracked using CLSM, were observed around or inside the biofilm structure after 48 h of cultivation (Supplementary Videos). However, the motility of cells differed according to their position in the biofilm structure. The highest number of motile cells was detected at the bottom of the well (Supplementary Videos 1, 3) moving more or less freely through the structure, while the motility and the number of motile cells decreased in the middle part of the biofilm (Supplementary Videos 2, 4). Furthermore, high number of motile cells was detected within the biofilm structure of 81-176 (Supplementary Videos 1, 2), whereas for NCTC 11168 the motile cells were detected mostly outside the biofilm (Supplementary Videos 3, 4). Effect of oxygen on biofilm formation of NCTC 11168 and 81-176 C. jejuni strains Two different approaches were used to evaluate the effect of subinhibitory oxygen concentration on biofilm formation of two strains with different biofilm forming ability (NCTC 11168 and 81-176). Firstly, biofilms were cultivated under controlled oxygen-enriched conditions (OECc) as described previously by Sulaeman et al. (2012). In OEC, the same concentration of CO2 (10%) as in MAC was maintained, while the O2 concentration was increased to a sublethal level (19% O2 in OEC vs. 5% in MAC). This enabled the evaluation of the effect of increased O2 concentration on biofilm development of C. jejuni regardless of its capnophilic nature requiring increased concentration of CO2. Biofilm volume of both strains was significantly increased (P