4 Vital Variables Available For Sitaxentan
B: The additional membrane (lower insert) with cultured SF was inserted beneath the upper membrane. C: Three devices (each containing 3 wells) were run in parallel. Medium alone or medium containing SDF-1 at 50 ng/ml SDF-1 was added to the lower compartment wells. The negative control chambers omitted SC, SDF-1, or both. Bone marrow cells were Sitaxentan allowed to circulate for 4 hr at 37 ��C. Thereafter, each device was disassembled and the transmigrated cells were collected from the lower compartment wells and counted. The number of transmigrated cells recovered is shown as the mean �� SD of three wells per condition. * p research in various fields including stem cell biology, vascular biology, hematology, oncology, autoimmunity, and inflammation. The 3D device will be particularly useful for researchers studying hematopoietic, mesenchymal, neural, and other stem cells to investigate the molecular mechanisms regulating each step of the stem cell extravasation cascade. Researchers studying cell migration can also use this device to examine the differing migratory mechanisms of T- and B-lymphocytes, monocytes, neutrophils, eosinophils, NK cells, and other migratory cells. In vascular biology, the device will be useful for assessing the effect of the local microenvironment on the ability of EC to support cell recruitment and to mimic the blood-brain barrier in vitro. For researchers focusing on disease pathogenesis, the device can be used to study the migration of cytotoxic T cells into the pancreas during type I diabetes, the migration of eosinophils into the lungs of asthma patients, the migration of neutrophils, monocytes, and lymphocytes into sites of inflammation in a variety of disorders, the recruitment of cells to wound healing sites, the interaction of cytotoxic T cells with the neovasculature, and recruitment of cytotoxic T cells into tumors. The novel 3D device will also be a useful tool for translational science and for preclinical drug development and screening. For example, the device can be used to optimize the preparation of therapeutic cell suspensions for intravenous administration, to test the recruitment of therapeutic cells to injured tissues versus normal tissues, and to examine the role of the specific organ or tissue endothelium and microenvironment in this process. For drug development, the device could be used to test drug candidates that target tumor cells and block each step of the extravasation cascade , to test migrating cells as a drug delivery vehicle to tumor sites, to test drugs that regulate the function of human organ-specific endothelium or the local tissue-specific microenvironment, and to test combinations of drugs that regulate different steps of the homing cascade. Finally, when converted into a high-throughput system, the device can be used for screening small molecules, peptides, and antibodies that target molecules mediating cell trafficking.