So, Who Wants To Know The Way To Make It To The Androgen Receptor Antagonist Leading Position

Матеріал з HistoryPedia
Версія від 19:05, 30 травня 2017, створена Knot32gallon (обговореннявнесок) (Створена сторінка: The major components of the EET pathway (Mtr pathway) in MR-1 critical for electricity generation in MFCs have been identified. Intracellular catabolic pathways...)

(різн.) ← Попередня версія • Поточна версія (різн.) • Новіша версія → (різн.)
Перейти до: навігація, пошук

The major components of the EET pathway (Mtr pathway) in MR-1 critical for electricity generation in MFCs have been identified. Intracellular catabolic pathways that produce reducing equivalents (e.g., NADH) have also been extensively studied in this species. In addition, several studies have analyzed the transcriptional regulatory www.selleckchem.com/products/fg-4592.html systems that control catabolic and electron-transfer pathways in MR-1. In this article, we summarize the current knowledge on catabolic and regulatory systems in S. oneidensis MR-1 that are involved in electricity generation in MFCs. The findings from genetic and biochemical studies were reviewed to provide a detailed view of the molecular mechanisms that are directly or indirectly involved in electricity generation by MR-1. EET Pathway The respiration of solid metals and electrodes requires a distinct molecular pathway, i.e., the EET pathway, for transferring electrons from intracellular electron carriers (e.g., NADH and quinones), across the inner membrane (IM) and outer membrane (OM), to extracellularly located insoluble electron acceptors. Genetic and biochemical studies have identified five primary protein components, CymA, MtrA, MtrB, MtrC, and OmcA, comprising the EET pathway in S. oneidensis MR-1 (the Mtr pathway; Figure ?Figure1;1; Shi et al., 2007). In addition, recent studies have demonstrated that the periplasmic cytochrome pool, which mainly consists of small tetraheme cytochromes (STCs; also referred to as CctA) and flavocytochrome c (FccA) proteins, is also involved in the EET process (Fonseca et al., 2012; Sturm et al., 2015). These findings indicate that the Mtr pathway serves as the major electron conduit that links the IM quinone pool to extracellular solid electron acceptors via a series of electron-transfer reactions between these component proteins. FIGURE 1 Proposed extracellular electron transfer (EET) pathways (Mtr pathway) in S. oneidensis MR-1 involved in direct EET (A) and mediated EET (B). OM, outer membrane; IM, inner membrane; MQH2, reduced form of menaquinone; MQ, oxidized form of menaquinone. In the Mtr pathway, EET is initiated by the transfer of electrons from the IM quinone pool to IM-anchored CymA (SO_4591). CymA is a tetraheme c-type cytochrome belonging to the NapC/NirT protein family and consists of a short N-terminal region that is anchored in the IM and a long C-terminal region that protrudes into the periplasm (Myers and Myers, 1997, 2000). The C-terminal region contains four heme-binding sites and mediate electron transfer to a decaheme c-type cytochrome, MtrA, as well as to other periplasmic respiratory proteins, including those responsible for the reduction of DMSO, fumarate, nitrate, and nitrite (Schwalb et al., 2002, 2003; Pitts et al., 2003; Gao et al., 2009; Schuetz et al., 2009).