My New-Found MAO Strategy Can Work Even If You Fall Asleep : )

Матеріал з HistoryPedia
Версія від 07:03, 10 червня 2017, створена Drawer9parade (обговореннявнесок) (Створена сторінка: Objects that can have any color are called non-color-diagnostic. The color of these objects is not [http://www.selleckchem.com/products/wnt-c59-c59.html beta-ca...)

(різн.) ← Попередня версія • Поточна версія (різн.) • Новіша версія → (різн.)
Перейти до: навігація, пошук

Objects that can have any color are called non-color-diagnostic. The color of these objects is not beta-catenin inhibitor predictable from the object��s category (e.g., Sedivy, 2003; Bram?o et al., 2011a), as theys can have many different colors (e.g., cars, pens). Conversely, objects that do have one or a few prototypical colors associated with them are called color-diagnostic objects (e.g., bananas, carrots), because color is diagnostic in determining their identity, and can be predicted from the object��s category (e.g., Tanaka and Presnell, 1999; Bram?o et al., 2011a,b). To study effects of atypicality, the focus is on color-diagnostic objects, because the color of these objects can be more or less like the prototypical color of the category the object belongs to. As said, in stored knowledge, the mental representation of such objects plausibly contains information about what their typical color is (e.g., Naor-Raz et al., 2003). This information is based on the color of objects in the same ontological category: if many exemplars of an object have the same color, then this color is prototypical of the object��s category (e.g., Rosch and Mervis, 1975). This does not rule out that other colors are possible too: Rosch��s (1975) Prototype Theory postulates that one object exemplar can simply be a better representative of the category than another. So, the exact color used is one factor that determines how atypical a color is for an object: for example, blue is very atypical for bananas, but green not so much. Within the category of color-diagnostic objects, higher, and lower color-diagnostic objects can be distinguished (e.g., Tanaka and Presnell, 1999). For high color-diagnostic objects, color is an important feature in determining their identity. Typical examples of such objects are fruits: often a fruit��s shape is simple and similar to other fruits (i.e., round with only a few protruding parts), which makes color more diagnostic in identification (e.g., Tanaka et al., 2001). So, when other aspects of objects such as shape are more characteristic, color is likely to be less instrumental in object recognition (Rosch and Mervis, 1975; Mapelli and Behrmann, 1997; McRae et al., 2005; Bram?o et al., 2011a, p. 245). Shape diagnosticity is, for object recognition, a moderating factor in the degree of association between an object and its typical and atypical colors: once viewers have to recognize atypically colored objects having a highly diagnostic shape, we may expect color to be less crucial in the recognition of the object, as the process will be informed more prominently by the diagnostic shape. It may be assumed that manipulations of color typicality are more conspicuous for objects with a relatively simple shape (e.g., lemons) than for complex-shaped objects (e.g., lobsters).