Confidential Information About CDK inhibitor Made Accessible
, 2012). However, this is different in V. cholerae, during the transport of ferric-enterobactin the energy required for IrgA and VctA receptors is provided by the TonB2 system (Seliger et al., 2001; Tanabe et al., 2012). The TonB3 system is not implicated in the transport of iron either V. parahaemolyticus or V. cholerae (Kuehl and Crosa, 2010; Tanabe et al., 2012), has been reported that the TonB3 system from V. vulnificus is induced when the bacterium grows in human serum (Alice and Crosa, 2012). The V. cholerae has two TonB systems, which are present on small chromosome (this is different from V. parahaemolyticus), and those encoding the TonB2 system are located on the large chromosome. They have unique as well as common functions (Seliger et al., 2001). Both mediate the transport of hemin, vibriobactin, and ferrichrome. However, only TonB1 participates in the use of the siderophore schizokinen, but TonB2 is required for the transport of enterobactin (Seliger et al., 2001). With respect to FhuA, this protein is the receptor for the siderophores desferri-ferrichrome and aerobactin in V. parahaemolyticus (Funahashi et al., 2009). In addition, FhuB, FhuC, and FhuD apparently are involved in the transport of the siderophores, and also are present in V. cholerae (Rogers et al., 2000; Funahashi et al., 2009). Regarding the hut genes, it has been reported that HutA is the receptor for the uptake of heme. In addition, HutR has significant homology to HutA as well as to other outer membrane heme receptors (GNAT2 Occhino et al., 1998; Mey and Payne, 2001). In the V. cholerae the presence of hutBCD stimulated growth when hemin was the iron source, but these genes were not essential for hemin utilization (Occhino et al., 1998; Mey and Payne, 2001; Wyckoff et al., 2004). Other genes found in the V. parahaemolyticus genome were the feo system. The feo system consists of genes that encoded proteins involved in the transport of ferrous iron (Fe2+), which is expected to be a major iron source in the intestine (Cartron et al., 2006). This Fe2+ iron transport system feo is widely distributed among bacterial species such as V. cholerae. In this bacterium, the feo operon consists of three genes, feoABC. FeoB is an 83-kDa protein involving in the pore formation for iron transport (Weaver et al., 2013). FeoA and FeoC are all required for iron acquisition; however, their functions have not been described in detail. Apparently, in the genome of V. parahaemolyticus there are genes that encode for this Fe2+ transport. Moreover, the V. parahaemolyticus contains other iron transporters such as FbpA and FbpB. In Pasteurella haemolytica the presence of FbpABC family of iron uptake systems has been documented (Kirby et al., 1998). This family of proteins is involved in the utilization and transport of the ferric-xenosiderophore of the bacterium N.