Something That All Of Us Ought To Know Concerning Sitaxentan
If the suture loops are not tightened enough, the force generated by the larva will not be fully transmitted to the force transducer. Both situations, but especially the latter, underestimate maximum twitch force. Second, since testing multiple experimental groups can take several hours (20-30 min/larva), alternate between groups because larvae will continue to develop during the testing period. While some of the mentioned equipment is essential for measurement of maximum twitch force (e.g. force transducer, current stimulator), other items are not absolutely necessary. The video sarcomere length system is desirable but not required. As an alternative, a series of twitches can be used to find optimal length, during which the length of the larva is adjusted until maximum twitch force is achieved. A temperature control system is also not absolutely necessary. Temperature control is critical when measuring twitch kinetics, which are highly sensitive to temperature, whereas maximum twitch force is not particularly sensitive to small changes in temperature and could be measured at room temperature. Note that regardless of the temperature in the chamber during force testing, the larvae should be maintained at the optimal growth temperature of 28.5 ��C24 prior to force testing for accurate staging. The larvae are tested in a Tyrodes solution containing tricaine. We use 0.02% (w/v) tricaine, the concentration recommended for anesthesia24, to eliminate spontaneous contractions evoked by the nervous system and thus prevent fatigue during force testing. Tricaine also facilitates the tie-on step and reduces overall testing time. However, we observe that including tricaine in the testing solution consistently reduces the maximum twitch force by Sitaxentan approximately 30%. A similar effect has also been observed in tadpole tail muscle, where tricaine reduced force generation after neuromuscular transmission was blocked, suggesting that tricaine has a direct effect on muscle25. Tricaine may reduce muscle cell excitability by reducing sodium conductance across the cell membrane, as it does in nerve cells26. Other options for blocking activation by motoneurons are d-tubocurarine and ��-bungarotoxin but, unlike tricaine, these compounds are not skin-permeable and must be injected directly into the head, spinal cord, or heart27. Individual investigators will need to assess whether or not tricaine is desirable for their specific application. If tricaine is included in the testing solution, the concentration should be consistent between experiments and researchers should verify that the effect of the tricaine does not vary between experimental groups. We describe this method for larvae as young as 3 dpf and as old as 7 dpf.