Відмінності між версіями «N Psychophysiology. Lewin, K. (1936). Principles of Topological Psychology. New York, NY»

Матеріал з HistoryPedia
Перейти до: навігація, пошук
м
м
 
(не показані 8 проміжних версій 8 учасників)
Рядок 1: Рядок 1:
When conceptual pacts are broken: partner-specific effects around the comprehension of referring expressions. J. Mem. Lang. 49, 201?13. Nadig, A., and Sedivy, J. (2002). Proof of perspective-taking constraints in children's on-line reference resolution. Psychol. Sci. 13, 329?36. Navon, D. (1977). Forest just before trees: the precedence of global attributes in visual perception. Cogn. Psychol. 9, 353?83. Norris, C. J., Chen, E. E., Zhu, D. C., Little, S. L., and Cacioppo, J. T. (2004). The interaction of social and emotional processes inside the brain. J. Cogn. Neurosci. 16, 1818?829. Obhi, S. S., and Sebanz, N. (2011). Moving with each other: toward understanding the mechanisms of joint action. Exp. Brain Res. 211, 329?36. Richardson, D. C., and Dale, R. (2005). Looking to realize:
+
Nadig, A., and Sedivy, J. (2002). Proof of perspective-taking constraints in children's on-line reference resolution. [https://www.medchemexpress.com/GSK2656157.html GSK2656157] Psychol. Sci. 13, 329?36. Navon, D. (1977). Forest ahead of trees: the precedence of international attributes in visual perception. Cogn. Psychol. 9, 353?83. Norris, C. J., Chen, E. E., Zhu, D. C., Tiny, S. L., and Cacioppo, J. T. (2004). The interaction of social and emotional processes within the brain. J. Cogn. Neurosci. 16, 1818?829. Obhi, S. S., and Sebanz, N. (2011). Moving with each other: toward understanding the mechanisms of joint action. Even though previous study has recommended that specific factors--such as similarity to the target and familiarity with an experience--can trigger empathy (Preston and De Waal, 2002; Mitchell et al., 2006; Xu et al., 2009), really little investigation has examined how interest impacts our potential to empathize. Previous study suggests that empathy may happen instantaneously and automatically when we recognize another's emotional state (Preston and De Waal, 2002), even if we are cognitively busy. On the other hand, other research suggests that empathy is disrupted when we are distracted and cognitively occupied (Gu and Han, 2007). Simply because attentional sources are typically depleted during daily interactions, it is actually significant to understand if empathy is automatically engaged or calls for controlled and effortful processing. Thus, the present study examines the part of automaticity and focus in neural processes underlying empathy.CORE NEURAL REGIONS FOR EMPATHYA essential purpose to look at empathy for many feelings below several different attentional situations is that it makes it possible for for an analysisof core neural regions for empathy. Earlier analysis has identified neural regions which might be regularly activated for the duration of empathy for physical pain (i.e., dorsal anterior cingulate cortex, dACC; and anterior insula, AI) (Morrison et al., 2004; Singer et al., 2004; Botvinick et al., 2005; Jackson et al., 2005; Zaki et al., 2007; Xu et al., 2009; Lamm et al., 2011). These dependable activations within the dACC and AI have led some researchers to conclude that these regions are part of a core network in empathy (Fan et al., 2011). Nevertheless, it's unknown no matter whether the dACC and AI are necessary to empathic processes additional normally (i.e., not just empathy for pain) and whether or not these regions are activated through empathy for each optimistic and adverse feelings. Current neuroimaging investigation suggests that other neural regions--such because the [https://www.medchemexpress.com/GSK2656157.html GSK2656157 web] medial prefrontal cortex (MPFC; BA 10), dorsomedial prefrontal cortex (DMPFC; BA 9), and ventromedial prefrontal cortex (VMPFC; BA 11)--may be involved in empathic processes.N Psychophysiology. Lewin, K. (1936). A., Bard, E. G. and Jeuniaux, P. (in press). Behavior matching in multimodal communication is synchronized. Cogn. Sci. Psychol. Sci. 13, 329?36. Navon, D. (1977). Forest ahead of trees: the precedence of worldwide attributes in visual perception. Cogn. Psychol. 9, 353?83. Norris, C. J., Chen, E. E., Zhu, D. C., Little, S. L., and Cacioppo, J. T. (2004). The interaction of social and emotional processes in the brain. J. Cogn. Neurosci. 16, 1818?829. Obhi, S. S., and Sebanz, N. (2011). Moving together: toward understanding the mechanisms of joint action. Exp. Brain Res. 211, 329?36. Richardson, D.
Empathy permits us to know and share others' emotions, building a bridge among the self and the innermost experiences of a different individual. As we interact with other people in our every day lives, we may possibly respond empathically to 1 particular person, but fail to connect with how a further individual is feeling. Even though prior research has recommended that certain factors--such as similarity to the target and familiarity with an experience--can trigger empathy (Preston and De Waal, 2002; [http://www.urgolfpro.com/members/carol0bangle/activity/161299/ Arousal under conditions of threat (Blackburn and LeeEvans, 2011)--and the truth is] Mitchell et al., 2006; Xu et al., 2009), quite little analysis has examined how interest impacts our capability to empathize. Previous analysis suggests that empathy may possibly happen instantaneously and automatically when we recognize another's emotional state (Preston and De Waal, 2002), even though we're cognitively busy. Nevertheless, other analysis suggests that empathy is disrupted when we are distracted and cognitively occupied (Gu and Han, 2007). Simply because attentional resources are frequently depleted throughout each day interactions, it is important to know if empathy is automatically engaged or demands controlled and effortful processing. Therefore, the existing study examines the role of automaticity and focus in neural processes underlying empathy.CORE NEURAL REGIONS FOR EMPATHYA key purpose to look at empathy for multiple feelings beneath several different attentional situations is the fact that it permits for an analysisof core neural regions for empathy. Prior analysis has identified neural regions which are consistently activated in the course of empathy for physical discomfort (i.e., dorsal anterior cingulate cortex, dACC; and anterior insula, AI) (Morrison et al., 2004; Singer et al., 2004; Botvinick et al., 2005; Jackson et al., 2005; Zaki et al., 2007; Xu et al., 2009; Lamm et al., 2011). These trusted activations inside the dACC and AI have led some researchers to conclude that these regions are a part of a core network in empathy (Fan et al., 2011). Nevertheless, it really is unknown regardless of whether the dACC and AI are [http://health-sg.com/members/cinema8forest/activity/102179/ Moreover, the clinical version of RGDfV, Cilengitide, is in clinical trials, underscoring the must fully have an understanding of the molecular mechanism which can be impacted by RGDfV] essential to empathic processes additional commonly (i.e., not just empathy for discomfort) and no matter if these regions are activated during empathy for both optimistic and adverse feelings. Recent neuroimaging investigation suggests that other neural regions--such as the medial prefrontal cortex (MPFC; BA 10), dorsomedial prefrontal cortex (DMPFC; BA 9), and ventromedial prefrontal cortex (VMPFC; BA 11)--may be involved in empathic processes.N Psychophysiology. Lewin, K.
+

Поточна версія на 12:44, 9 вересня 2017

Nadig, A., and Sedivy, J. (2002). Proof of perspective-taking constraints in children's on-line reference resolution. GSK2656157 Psychol. Sci. 13, 329?36. Navon, D. (1977). Forest ahead of trees: the precedence of international attributes in visual perception. Cogn. Psychol. 9, 353?83. Norris, C. J., Chen, E. E., Zhu, D. C., Tiny, S. L., and Cacioppo, J. T. (2004). The interaction of social and emotional processes within the brain. J. Cogn. Neurosci. 16, 1818?829. Obhi, S. S., and Sebanz, N. (2011). Moving with each other: toward understanding the mechanisms of joint action. Even though previous study has recommended that specific factors--such as similarity to the target and familiarity with an experience--can trigger empathy (Preston and De Waal, 2002; Mitchell et al., 2006; Xu et al., 2009), really little investigation has examined how interest impacts our potential to empathize. Previous study suggests that empathy may happen instantaneously and automatically when we recognize another's emotional state (Preston and De Waal, 2002), even if we are cognitively busy. On the other hand, other research suggests that empathy is disrupted when we are distracted and cognitively occupied (Gu and Han, 2007). Simply because attentional sources are typically depleted during daily interactions, it is actually significant to understand if empathy is automatically engaged or calls for controlled and effortful processing. Thus, the present study examines the part of automaticity and focus in neural processes underlying empathy.CORE NEURAL REGIONS FOR EMPATHYA essential purpose to look at empathy for many feelings below several different attentional situations is that it makes it possible for for an analysisof core neural regions for empathy. Earlier analysis has identified neural regions which might be regularly activated for the duration of empathy for physical pain (i.e., dorsal anterior cingulate cortex, dACC; and anterior insula, AI) (Morrison et al., 2004; Singer et al., 2004; Botvinick et al., 2005; Jackson et al., 2005; Zaki et al., 2007; Xu et al., 2009; Lamm et al., 2011). These dependable activations within the dACC and AI have led some researchers to conclude that these regions are part of a core network in empathy (Fan et al., 2011). Nevertheless, it's unknown no matter whether the dACC and AI are necessary to empathic processes additional normally (i.e., not just empathy for pain) and whether or not these regions are activated through empathy for each optimistic and adverse feelings. Current neuroimaging investigation suggests that other neural regions--such because the GSK2656157 web medial prefrontal cortex (MPFC; BA 10), dorsomedial prefrontal cortex (DMPFC; BA 9), and ventromedial prefrontal cortex (VMPFC; BA 11)--may be involved in empathic processes.N Psychophysiology. Lewin, K. (1936). A., Bard, E. G. and Jeuniaux, P. (in press). Behavior matching in multimodal communication is synchronized. Cogn. Sci. Psychol. Sci. 13, 329?36. Navon, D. (1977). Forest ahead of trees: the precedence of worldwide attributes in visual perception. Cogn. Psychol. 9, 353?83. Norris, C. J., Chen, E. E., Zhu, D. C., Little, S. L., and Cacioppo, J. T. (2004). The interaction of social and emotional processes in the brain. J. Cogn. Neurosci. 16, 1818?829. Obhi, S. S., and Sebanz, N. (2011). Moving together: toward understanding the mechanisms of joint action. Exp. Brain Res. 211, 329?36. Richardson, D.