Convert Your SP600125 In To A Absolute Goldmine
The multidimensions of key touch quantitatively returned by the scanner can provide an ideal platform for examining the interaction between pianists' expressive intention and their piano key touch (cf. McPherson and Kim, 2013). Literature on mechanics of skilled motor movement (such as speech production and music performance) suggests that dynamics of motor movement are related not only to peak velocity but also to the movement amplitude, i.e., the peak velocity should be divided by the movement amplitude in order to compare dynamics of movement of different sizes (Nelson, 1983; Ostry et al., 1983; Ostry and Munhall, 1985). Therefore, in the context of piano performance, since each keystroke may correspond to different degrees of key displacement (i.e., different amplitudes of key movement), it is necessary to factor in key displacement at the point of peak velocity to yield the kinematic dynamics of each keystroke which reflects pianists' finger force (Minetti et al., 2007). Similar approach can also be found in Kinoshita et al. (2007) where key displacement was taken as a factor in comparing finger force under the conditions of different types of key touch. The examination of kinematic dynamics needs to take into account the role of fingerings. This is because in piano performance, alternative fingerings can be used for the same piece of music, which is unlike playing other instruments. Usually, different fingering strategies can reflect how pianists intend to interpret the structure, meaning and emotion of music in which dynamics play an important role (Neuhaus, 1973; Bamberger, 1976; Clarke et al., 1997). Parncutt et al. (1997) established a set of hypothetical rules of right-hand fingerings according to ergonomic difficulty such as the extent of hand spans, the involvement of weak fingers, and the coordinated playing on black and white keys. Of particular importance are hand spans and weak fingers. This is because the extent of hand spans can affect the degree of tension and physical effort of fingers (Parncutt et al., 1997). Weak fingers usually refer to the fourth and fifth fingers (Parncutt et al., 1997) which can constrain the flexibility of finger movement because of the hand's anatomical structure: unlike the thumb and index fingers which are relatively independent, the middle, ring and little finger are closely linked to each other via the flexor digitorum profundus (FDP) tendons because they share a common muscle belly (Gunter, 1960). Moreover, the flexor digitorum superficialis (FDS) is especially responsible for the coupling between the fourth and fifth fingers (Baker et al., 1981; Austin et al., 1989). Nevertheless, whether weak fingers can significantly influence piano C59 wnt in vivo performance is still a matter of debate.