Prime Source Of Why You Should Never Doubt The Capacity Of RRAD
Range of NaCl concentration allowing growth is between 0.17 and 0.86 M, with an optimum of 0.52 M (Atomi et al., 2004). Further research showed that T. kodakarensis KOD1 could grow after aerobic inoculation, at which the cells were initially under oxygen saturation at the cultivation temperature (Kobori et al., 2010). To study the effect of stresses on T. kodakarensis KOD1, the cells were exposed to 95��C, 1 M NaCl, or saturated oxygen condition for 4 h. The effect of the stresses on cells viability was assayed using the most probable number method. The RRAD results showed that there were no significant differences in the frequency of viable cells compared to control (Supplementary Figure S1). To better understand the molecular mechanism underlying the responses of T. kodakarensis KOD1 to heat, oxidative, and salt stresses, we conducted comparative proteomics assays to identify proteins differentially expressed in this strain based on 2-D gel electrophoresis using cells grown under the stresses for 1 h. The cytosolic proteins were subjected to 2-DE, and MALDI was used to identify the proteins involved in heat, oxidative, and salt responses. Proteins extracted under conditions without any stress were used as a control. The gels (Supplementary Figures S2�CS4) were silver stained and subsequently analyzed using PDQuest 7.1. After optimization of the 2-DE gels and image processing, the proteins showing at least 1.5-fold (control reference gel) increased expression were further subjected to mass spectrometry. The experiments were repeated three times, and only the reproducible differences were considered. Based on the 2-DE gels, we identified 83, 33, and 56 up-regulated proteins in response to heat, osmotic, and oxidative stresses, respectively. Among these proteins, 59, forty-two, and twenty-nine up-regulated proteins were identified using MALDI-TOF/MS, and these results are summarized in Tables ?Tables11�C?33 under heat, oxidative, and salt stresses, respectively. The pIs of the protein spots ranged from 4.0 to 6.5, and the molecular masses ranged from 5.4 to 92.6 kDa. A homology-based search using the available protein databases revealed that proteins of T. kodakarensis KOD1 origin as the best results in all cases. The molecular masses and pIs for each protein, estimated from the spot positions on the gels, were compared with those of the homologous proteins retrieved. In most cases, these values were comparable (Tables ?Tables11�C?33). Table 3 List of up-regulated proteins under salt stress in T. kodakarensis KOD1. Table 2 List of up-regulated proteins under oxidative stress in T. kodakarensis KOD1.